Bounds for the connective constant of the hexagonal lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2004 J. Phys. A: Math. Gen. 37549
(http://iopscience.iop.org/0305-4470/37/3/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.91
The article was downloaded on 02/06/2010 at 18:24

Please note that terms and conditions apply.

Bounds for the connective constant of the hexagonal lattice

S E Alm and R Parviainen
Department of Mathematics, Uppsala University, Box 480, 75106 Uppsala, Sweden
E-mail: sea@math.uu.se and robert@math.uu.se

Received 8 July 2003, in final form 26 September 2003
Published 7 January 2004
Online at stacks.iop.org/JPhysA/37/549 (DOI: 10.1088/0305-4470/37/3/001)

Abstract

We give improved bounds for the connective constant of the hexagonal lattice. The lower bound is found by using Kesten's method of irreducible bridges and by determining generating functions for bridges on one-dimensional lattices. The upper bound is obtained as the largest eigenvalue of a certain transfer matrix. Using a relation between the hexagonal and the $\left(3.12^{2}\right)$ lattices, we also give bounds for the connective constant of the latter lattice.

PACS number: 05.50.+q
Mathematics Subject Classification: 05A15, 05C40

1. Introduction

In this work we give improved bounds for the connective constant of the hexagonal lattice. However, the methods used are valid for a larger class of lattices.

The main motivation is to improve the partial order induced by strict bounds for connective constants for different lattices, studied in [3]. In order to separate the hexagonal lattice from the $\left(4.8^{2}\right)$ lattice, we needed to apply a non-standard application of Kesten's method, which motivated a separate paper on the hexagonal lattice. A related partial order defined by percolation thresholds is studied in [10, 12].

1.1. Self-avoiding walks

A walk of length n on a lattice is an alternating sequence of vertices and edges $\left\{v_{0}, e_{1}, v_{1}, e_{2}, \ldots, e_{n}, v_{n}\right\}$ such that the edge e_{i} connects the vertices v_{i-1} and v_{i}. The walk is self-avoiding if all vertices $v_{0}, v_{1}, \ldots, v_{n}$ are distinct.

For a regular graph, let f_{n} denote the number of self-avoiding walks, starting at a fixed vertex. Hammersley [6] proved that there exists a constant μ, called the connective constant of the lattice, such that

$$
\lim _{n \rightarrow \infty} f_{n}^{1 / n}=\mu
$$

Define the generating function for self-avoiding walks, sometimes called the susceptibility, by ($f_{0}=1$ by convention)

$$
F(x)=\sum_{n=0}^{\infty} f_{n} x^{n}
$$

The generating function has radius of convergence $x_{c}=\mu^{-1}$.
The connective constant is unknown for all (truly) two-dimensional lattices, although Nienhuis [9] has presented strong evidence through non-rigorous computations that the connective constant for the hexagonal lattice equals $\sqrt{2+\sqrt{2}} \approx 1.847759$.

1.2. Bounds for the connective constant

Since the connective constants are unknown for most lattices, many papers concern bounds for the constants.

The first bounds for the connective constant, $\mu=\mu_{\text {hex }}$, of the hexagonal lattice were given by Fisher and Sykes [5] in 1959. They obtained the bounds

$$
1.7872<\mu<1.9276
$$

and also enumerated f_{n}, for $n \leqslant 20$. Sykes et al [11] extended the enumeration to $n \leqslant 34$ in 1972.

In his pioneering paper, Hammersley [6] showed that

$$
\mu<f_{n}^{1 / n}
$$

which, using f_{34} gives

$$
\mu<f_{34}^{1 / 34}<1.9232
$$

although Sykes et al did not give this bound in their paper.
Ahlberg and Janson [1] used the above enumeration, and the fact that for the hexagonal lattice

$$
\begin{equation*}
\mu<\left(f_{n} / f_{2}\right)^{1 /(n-2)} \tag{1}
\end{equation*}
$$

to show that

$$
\mu<\left(f_{34} / f_{2}\right)^{1 / 32}<1.895 .
$$

In 1993, Alm [2] showed that

$$
\begin{equation*}
\mu<\left(\lambda_{1}(G(m, n))\right)^{1 /(n-m)} \tag{2}
\end{equation*}
$$

where λ_{1} denotes the largest eigenvalue of the matrix $G(m, n)=\left(g_{i j}\right)_{K_{m} \times K_{m}}$, where the element $g_{i j}$ is the number of n-stepped self-avoiding walks that start with γ_{i} and end with a translation of γ_{j}, and $\gamma_{1}, \ldots, \gamma_{K_{m}}$ are the different m-stepped self-avoiding walks (after taking symmetry considerations into account).

Using (2) with $n=34, m=12$, gave $K_{12}=736$, and the bound

$$
\mu<1.87603
$$

which is the currently best available upper bound for μ.
To summarize, we know that

$$
1.7872<\mu<1.87603
$$

which should be compared with the supposedly correct value given by Nienhuis [9],

$$
\mu^{(N)}=\sqrt{2+\sqrt{2}} \approx 1.847759
$$

The bounds differ by $-0.061(-3.3 \%)$ and $+0.028(+1.5 \%)$ from this value, so that there is more room for improvement of the lower bound.

2. Upper bounds

Improved upper bounds are obtained by the method of Alm [2]. The improvement of computers in the last ten years makes it possible to handle much larger matrices as well as much longer self-avoiding walks.

Using (2) with $n=45, m=17$, we get $K_{17}=17700$, and the bound

$$
\mu<1.868832
$$

This reduces the difference between the upper bound and $\mu^{(N)}=\sqrt{2}+\sqrt{2}$ to $+0.021(+1.1 \%)$.
The computation took 944 CPU hours on a 1 GHz PC.
From the matrix $G(m, n)$, we can also compute f_{n}, thereby extending the enumeration of f_{n} to $n \leqslant 45$. This was further extended to $n \leqslant 48$ by direct computations; f_{48} requiring 928 CPU hours.

The values of $f_{n}, n \leqslant 48$ are given in table 1 together with upper bounds for μ for $m=17$ and $34 \leqslant n \leqslant 45$. For comparison, we also include the bounds (1) for $m=2$, i.e. $\bar{\mu}_{2}=\left(f_{n} / f_{2}\right)^{1 /(n-2)}$, which are the best bounds that can be obtained directly from the enumeration.

3. Lower bounds

3.1. The method of Kesten

In [8], Kesten presents a method for finding lower bounds for the connective constant, based on so called irreducible bridges.

Given a fixed embedding of the lattice in the plane, let the coordinates for a vertex v be denoted by $(v(x), v(y))$. A bridge of length n is a self-avoiding walk such that

$$
v_{0}(y)<v_{i}(y) \leqslant v_{n}(y) \quad \text { for } \quad i=1, \ldots, n-1
$$

Denote the number of bridges of length n by b_{n}, and the generating function for bridges by ($b_{0}=1$)

$$
B(x)=\sum_{n=0}^{\infty} b_{n} x^{n}
$$

An irreducible bridge is a bridge that cannot be decomposed into two bridges. Denote the number of irreducible bridges of length n by a_{n}, and the generating function for irreducible bridges by $\left(a_{0}=0\right)$

$$
A(x)=\sum_{n=1}^{\infty} a_{n} x^{n}
$$

Kesten proved that the connective constants for bridges and irreducible bridges are the same as for self-avoiding walks,

$$
\lim _{n \rightarrow \infty} b_{n}^{1 / n}=\lim _{n \rightarrow \infty} a_{n}^{1 / n}=\lim _{n \rightarrow \infty} f_{n}^{1 / n}=\mu
$$

Further, $A(x)$ and $B(x)$ are related by

$$
B(x)=\frac{1}{1-A(x)}
$$

Then, since $A(x)$ and $B(x)$ both have radius of convergence μ^{-1}, it follows [8, theorem 5] that the solution of $A(x)=1$ is μ^{-1}.

Table 1. Number of self-avoiding walks, f_{n}, and upper bounds, $\bar{\mu}_{m}$, for $m=2$ and $m=17$.

n	f_{n}	$\bar{\mu}_{2}$	$\bar{\mu}_{17}$
1	3		
2	6		
3	12	2.000000	
4	24	2.000000	
5	48	2.000000	
6	90	1.967990	
7	174	1.961010	
8	336	1.955982	
9	648	1.952042	
10	1218	1.942840	
11	2328	1.939314	
12	4416	1.935031	
13	8388	1.931770	
14	15780	1.927509	
15	29892	1.924934	
16	56268	1.921862	
17	106200	1.919545	
18	199350	1.916866	
19	375504	1.914895	
20	704304	1.912692	
21	1323996	1.910950	
22	2479692	1.909029	
23	4654464	1.907493	
24	8710212	1.905836	
25	16328220	1.904467	
26	30526374	1.902999	
27	57161568	1.901771	
28	106794084	1.900472	
29	199788408	1.899364	
30	372996450	1.898197	
31	697217994	1.897191	
32	1300954248	1.896140	
33	2430053136	1.895223	
34	4531816950	1.894268	1.872434
35	8459583678	1.893427	1.872094
36	15769091448	1.892556	1.871650
37	29419727280	1.891782	1.871334
38	54816035922	1.890984	1.870930
39	102216080286	1.890269	1.870635
40	190380602052	1.889534	1.870266
41	354843312276	1.888871	1.869989
42	660671299170	1.888191	1.869650
43	1230891734724	1.887575	1.869390
44	2291023353264	1.886944	1.869077
45	4266787588320	1.886370	1.868832
46	7939282155480	1.885783	
47	14780995214220	1.885246	
48	27495750661500	1.884698	

Figure 1. The hexagonal lattice, with an irreducible bridge of height 4.

Lower bounds for μ follow from the observation that, if $0 \leqslant \tilde{a}_{n} \leqslant a_{n}, n=2,3, \ldots, \infty$, then the reciprocal x_{c}^{-1} of the solution x_{c} to

$$
\sum_{n=1}^{\infty} \tilde{a}_{n} x^{n}=1
$$

is a lower bound for the connective constant μ. Note that by letting $\tilde{a}_{n}=0$ for $n>N$, this allows us to truncate the infinite series.

Consider the standard embedding of the hexagonal lattice, as shown in figure 1. Define the height of a walk from v_{0} to v_{n} as the minimum number of vertical edges in any walk from v_{0} to v_{n}. An irreducible bridge of length 22 and height 4 is shown in figure 1 . Let b_{n}^{N} and a_{n}^{N} denote the number of bridges and irreducible bridges of length n and height N, and denote their generating functions by $B_{N}(x)$ and $A_{N}(x)$. Since $\sum_{k=1}^{\infty} a_{n}^{k}=a_{n}$, the reciprocal of the solution to

$$
\sum_{k=1}^{N} A_{k}(x)=\sum_{n=2}^{\infty}\left(\sum_{k=1}^{N} a_{n}^{k}\right) x^{n}=1
$$

is a lower bound for the connective constant μ.
Note that irreducible bridges must end at a top vertex of a hexagon, and that an irreducible bridge of height $N \geqslant 2$ must use at least three vertical edges of each height except the first, and have length at least $6 N-2$. For height 1 , there are two irreducible bridges of each even length $n \geqslant 2$ (an irreducible bridge on the hexagonal lattice must have length at least 2).

Also, as every bridge either is an irreducible bridge, or can be decomposed into one irreducible bridge and one bridge, the following relation holds

$$
B_{N}(x)=A_{N}(x)+A_{N-1}(x) B_{1}(x)+A_{N-2}(x) B_{2}(x)+\cdots+A_{1}(x) B_{N-1}(x) .
$$

The generating function $A_{N}(x)$ can thus be obtained from $A_{k}(x), k=1, \ldots, N-1$ and $B_{k}(x), k=1, \ldots, N$, by
$A_{N}(x)=B_{N}(x)-A_{1}(x) B_{N-1}(x)-A_{2}(x) B_{N-2}(x)-\cdots-A_{N-1}(x) B_{1}(x)$.
In the next section we will see that, using methods from Alm and Janson [4], it is theoretically possible to calculate $B_{N}(x)$, and thus $A_{N}(x)$, in finite time for any fixed height N.

3.2. One-dimensional self-avoiding walks and bridges

In [4], Alm and Janson have studied self-avoiding walks on one-dimensional lattices. For our purpose, it is sufficient to define a one-dimensional lattices as a horizontal strip of finite height of a two-dimensional lattice.

Figure 2. The embedding of the hexagonal lattice used for finding the generating function for bridges of height 3 .

They show how to exactly compute the generating function for self-avoiding walks. The generating function is in principle obtained as one element in the inverse of a large matrix.

Only minor straightforward modifications are necessary to get the same result for the generating function for bridges.

To state the result precisely, we first need several definitions. Assume that the onedimensional lattice is embedded in the plane in such a way that it consists of an alternating sequence of isomorphic hinges and isomorphic sections.

A hinge consists of vertices, all with the same x-coordinate, and all edges between these vertices. A section consists of all edges between two adjacent hinges. For the hexagonal lattice, we use embeddings of the type showed in figure 2, in which the hinges consist of the vertices and the vertical edges. The sections consist of the dotted edges. Note that in the graph in figure 2 , self-avoiding walks that start at one of the bottom vertices, and ends at one of the top vertices, will be bridges of height 3 , according to the usual embedding of the hexagonal lattice.

Consider a bridge on the lattice. The appearance of the bridge in a given section is called a configuration. The appearance of the bridge in a given hinge is called a shape. The shape of a particular hinge is not necessarily determined by the adjacent configurations, but a shape completely determines the configurations on both sides.

Let Σ be the set of all possible configurations, extended with two empty configurations, ϕ_{L} and ϕ_{R}. Any finite walk must by convention start with the configuration ϕ_{L}, and end with the configuration ϕ_{R}. Any finite bridge must start at the lowest level, and end at the highest level.

There is a one-to-one correspondence between bridges and correctly connected alternating sequences $\left\{\phi_{L}=c_{0}, s_{1}, c_{1}, \ldots, s_{m}, c_{m}=\phi_{R}\right\}$ of configurations and shapes, correctly connected meaning that for every shape s_{i}, c_{i-1} and c_{i} are the configurations determined by s_{i}.

The generating function $B_{N}(x)$ for bridges of some fixed height N is obtained from the following two square matrices, both indexed by $\Sigma . H=H(x)$ is a diagonal matrix with elements $x^{h_{i}}$, where h_{i} is the number of edges in configuration $i . V=V(x)=\left\{v_{i j}\right\}$ has elements $v_{i j}=\sum x^{v_{k}}$, where the sum is over all shapes k that can connect configuration i to the left, with configuration j to the right, and v_{k} is the number of edges in shape k. By convention, $v_{i \phi_{L}}=v_{\phi_{R} i}=0$, for all i. Define the generating matrix $G=G(x)$ by $G=H V$.

Theorem 1 (Alm, Janson).

$$
B_{N}(x)=V_{\phi_{L}, \phi_{R}}+(V G)_{\phi_{L}, \phi_{R}}+\left(V G^{2}\right)_{\phi_{L}, \phi_{R}}+\cdots=\left(V(I-G)^{-1}\right)_{\phi_{L}, \phi_{R}} .
$$

Remark 1. A more straightforward way to get lower bounds from one-dimensional lattices would be to directly compute the connective constants for self-avoiding walks. However, this gives worse bounds than the method based on bridges, for one-dimensional lattices of the same heights.

3.3. Examples

We now illustrate theorem 1 with two examples, by calculating the generating function for irreducible bridges of heights 1 and 2.

For height 1 , there are four possible configurations, $\Sigma=\left\{\phi_{L}, \nwarrow, \searrow, \phi_{R}\right\}$, with lengths $0,1,1,0$. The generating matrix G_{1} is given by
$G_{1}=H_{1} V_{1}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & x & 0 & 0 \\ 0 & 0 & x & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{cccc}0 & 1 & x^{2} & x^{2} \\ 0 & x & 0 & x \\ 0 & 0 & x & x \\ 0 & 0 & 0 & 0\end{array}\right)=\left(\begin{array}{cccc}0 & 1 & x^{2} & x^{2} \\ 0 & x^{2} & 0 & x^{2} \\ 0 & 0 & x^{2} & x^{2} \\ 0 & 0 & 0 & 0\end{array}\right)$.
The generating function is given by

$$
\begin{aligned}
A_{1}(x) & =B_{1}(x)=\left(V_{1}\left(I-G_{1}\right)^{-1}\right)_{1,4}=\frac{2 x^{2}}{1-x^{2}} \\
& =2 x^{2}+2 x^{4}+2 x^{6}+2 x^{8}+\cdots .
\end{aligned}
$$

For height 2, there are eight configurations,

$$
\Sigma=\left\{\phi_{L}, \stackrel{\searrow}{\nwarrow}, \nwarrow, \nwarrow, \downarrow, \searrow, \phi_{R}, \quad \searrow\right\}
$$

The matrices H_{2} and V_{2} are given by
$H_{2}=\left(\begin{array}{cccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & x^{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & x & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & x & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & x & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & x & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & x^{2}\end{array}\right) \quad V_{2}=\left(\begin{array}{cccccccc}0 & x^{2} & 1 & x^{2} & x^{4} & x^{2} & x^{4} & x^{2} \\ 0 & x^{2} & 0 & x^{2} & x^{2} & x^{2} & x^{2} & x^{2} \\ 0 & 0 & x & x & 0 & 0 & x^{3} & x^{3} \\ 0 & 0 & x^{3} & x & 0 & 0 & x & 0 \\ 0 & 0 & 0 & 0 & x & x & x & x \\ 0 & 0 & 0 & 0 & x^{3} & x & x^{3} & x \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & x^{2} & x^{2}\end{array}\right)$.
The generating function is

$$
\begin{aligned}
A_{2}(x) & =B_{2}(x)-A_{1}(x) B_{1}(x)=\left(V_{2}\left(I-G_{2}\right)^{-1}\right)_{1,7}-A_{1}(x)^{2} \\
& =\frac{2 x^{10}\left(x^{4}+4 x^{2}+4\right)}{\left(1-x^{2}\right)^{2}\left(1+x^{2}\right)\left(1-x^{2}-x^{4}-x^{8}\right)}=8 x^{10}+24 x^{12}+58 x^{14}+\cdots
\end{aligned}
$$

3.4. Summary

In this section we summarize the method used for the lower bound. Assume that we have calculated the generating functions B_{k} for bridges of height $k=1, \ldots, N$. From these we can calculate A_{k}, by equation (3). A lower bound for the connective constant μ is achieved by the reciprocal x_{c}^{-1} of the solution x_{c} to the equation $\sum_{k=1}^{N} A_{k}(x)=1$.

Note that, if we underestimate the functions B_{k}, we get underestimates of the functions A_{k}, and therefore, still get a lower bound. It is therefore permissible to truncate the infinite series B_{k}, for the cases where it is feasible to carry out the symbolic inversion of the matrix, and also to truncate the infinite series representation of the inverse matrix.

Table 2. Number of irreducible bridges.

Height							
n	1	2	3	4	5	6	7
2	2						
4	2						
6	2						
8	2						
10	2	8					
12	2	24					
14	2	58					
16	2	116	40				
18	2	226	248				
20	2	418	956				
22	2	764	2932	232			
24	2	1368	8158	2208			
26	2	2438	21194	11908			
28	2	4312	52768	48924	1456		
30	2	7612	127424	174384	18656		
32	2	13398	301336	567066	130180		
34	2	23564	701240	1734242	669868	9584	
36	2	41398	1613176	5077228	2896786	154112	
38	2	72708	3678486	14399854	11186920	1321320	
40	2	127646	8332878	39863556	39960038	8176732	65136
42	2	224070	18781132	108330740	134910038	41577438	1258416
44	2	393274	42167658	290120946	436772298	185506724	12797828
46	2	690222	94393440	768000442	1369384066	754670432	92575300
48	2	1211320	210817326	2014040116	4287469968	2868092528	541473298
50	2	2125800	469995164	5241551508	12553608776	10351754668	2740477924
52	2	3730590	1046346578	13555798878	37039148380	35894677308	12497716690
54	2	6546818	2326934596	34876762888	107870357502	120587726960	52714512594
56	2	11488942	5170378690	89344535622	310799090686	394963366374	209362196128
58	2	20161784	11480731734	228047517858	887494845612	1267269921544	793008736988
60	2	35381548	25479343670	580303521948	2515218274794	3998003947894	2891762035512
62	2	62090392	56523233522	1472856568902	7082773418692	12437565678140	10224629512728
64	2	108961132	125349924212	3729993423200	19835888844516	38241846805060	35247308133632
66	2	191213568	277913356354	9428372543664	55290614198678	116425397228820	118980531760554
68	2	335556516	616036743246	23793707134584	153488979691246	351481068641732	394632167359492
70	2	588860754	1365319252836	59962719844118	424578943200246	1053470052659232	1289668249938810
72	2	1033378688	3025567446724	150930254650748	1170815299517686	3137874062518550	4162060662237216
74	2	1813453306	6704031069242	379504185427756	3219812806690196	9295979825494524	13288671828545886
76	2	3182388814	14853570233752	953369709263106	8833331985285592	27409160402323884	42039183397649906
78	2	5584703188	32907775865780	2393102745030608	24181849819174446	80479402119427078	131938075461499130
80	2	9800471012	72902886657418	6002886315196280	66073638249791486	235435386138206528	411227122483745614
82	2	17198627838	161500519239580	15048570170389500	180230973427403650	686491758206462152	1273995129812876972
84	2	30181488004	357758261638838	37705022115819458	490874221247694464	1995853645048476200	3925967882491042342

3.5. Results

For heights up to 4 , we were able to find exact expressions for the generating function for irreducible bridges. These are given in section 3.6. For heights 5, 6 and 7, we were also able to determine the generating matrix G, but were unable to carry out the matrix inversion. Instead we truncated the infinite series representation of the inverse, by an iterative method described in section 3.7.

The number of irreducible bridges for heights up to 7 , and lengths up to 84 are given in table 2.

To improve the lower bound, we have also computed the number of irreducible bridges of heights 8,9 and 10 , for lengths up to 58,

$$
\begin{aligned}
& \begin{array}{l}
A_{8}(x)=452960 x^{46}+10207872 x^{48}+120066252 x^{50}+99411028 x^{52}+657310510 x^{54} \\
\quad+37244196500 x^{56}+188193918866 x^{58}+O\left(x^{60}\right) \\
A_{9}(x)=3204784 x^{52}+82465376 x^{54}+1100970508 x^{56}+10265702604 x^{58}+O\left(x^{60}\right) \\
A_{10}(x)=22982032 x^{58}+O\left(x^{60}\right) .
\end{array} .
\end{aligned}
$$

The best lower bound found in this work is 1.833009 764. The difference between this bound and $\mu^{(N)}=\sqrt{2+\sqrt{2}}$ is $-0.015(-0.8 \%)$, slightly smaller than the difference for the upper bound.

Remark 2. The computations for $n=58$ were distributed over a large number of computers. The total computation time was 22400 CPU hours (1.6 GHz).

3.6. The generating functions

Below, we give the generating function for heights up to 4. D_{N} and N_{N} denotes the denominator and numerator of A_{N}.

$$
A_{1}(x)=\frac{2 x^{2}}{1-x^{2}}
$$

$$
A_{2}(x)=\frac{2 x^{10}\left(x^{4}+4 x^{2}+4\right)}{\left(1-x^{2}\right)^{2}\left(1+x^{2}\right)\left(1-x^{2}-x^{4}-x^{8}\right)}
$$

$$
\begin{aligned}
& D_{3}(x)=\left(x^{4}-1\right)^{2}\left(x^{8}-2 x^{6}+3 x^{4}-3 x^{2}+1\right)\left(x^{38}-5 x^{36}+14 x^{34}-27 x^{32}+36 x^{30}-34 x^{28}\right. \\
&+19 x^{26}-2 x^{24}-6 x^{22}+11 x^{20}-18 x^{18}+27 x^{16}-23 x^{14} \\
&\left.+9 x^{12}-x^{10}+4 x^{6}-8 x^{4}+5 x^{2}-1\right) \\
& N_{3}(x)=-2\left(x^{38}+4 x^{36}-20 x^{34}+45 x^{32}-57 x^{30}-6 x^{28}+127 x^{26}-243 x^{24}\right. \\
&+205 x^{22}-22 x^{20}-54 x^{18}-21 x^{16}+137 x^{14}-2 x^{12} \\
&\left.-209 x^{10}+147 x^{8}+38 x^{6}-34 x^{4}-36 x^{2}+20\right) x^{16}
\end{aligned}
$$

$$
\begin{aligned}
D_{4}(x)=\left(x^{2}+\right. & +1)^{9}\left(x^{5}-x^{4}+x^{2}-x+1\right)^{2}\left(x^{5}+x^{4}-x^{2}-x-1\right)^{2}\left(x^{4}+1\right)^{2}\left(x^{40}-4 x^{38}\right. \\
& +4 x^{36}+5 x^{34}-17 x^{32}+23 x^{30}-16 x^{28}-4 x^{26}+17 x^{24}-15 x^{22}+8 x^{20} \\
& \left.+5 x^{18}-14 x^{16}+5 x^{14}+2 x^{12}-2 x^{10}+4 x^{8}-x^{6}-4 x^{4}+1\right)^{2}\left(x^{37}-x^{36}\right. \\
& -4 x^{35}+6 x^{34}+6 x^{33}-15 x^{32}-4 x^{31}+19 x^{30}+4 x^{29}-14 x^{28}-12 x^{27} \\
& +13 x^{26}+17 x^{25}-19 x^{24}-13 x^{23}+21 x^{22}+14 x^{21}-19 x^{20}-18 x^{19}+17 x^{18} \\
& +10 x^{17}-14 x^{16}-6 x^{15}+15 x^{14}+8 x^{13}-10 x^{12}-5 x^{11}+4 x^{10}+4 x^{9}-8 x^{8} \\
& \left.-3 x^{7}+5 x^{6}+x^{5}-x^{4}-x^{3}+2 x^{2}-1\right)^{2}\left(x^{37}+x^{36}-4 x^{35}-6 x^{34}+6 x^{33}\right. \\
& +15 x^{32}-4 x^{31}-19 x^{30}+4 x^{29}+14 x^{28}-12 x^{27}-13 x^{26}+17 x^{25}+19 x^{24} \\
& -13 x^{23}-21 x^{22}+14 x^{21}+19 x^{20}-18 x^{19}-17 x^{18}+10 x^{17}+14 x^{16}-6 x^{15} \\
& -15 x^{14}+8 x^{13}+10 x^{12}-5 x^{11}-4 x^{10}+4 x^{9}+8 x^{8}-3 x^{7}-5 x^{6}+x^{5} \\
& \left.+x^{4}-x^{3}-2 x^{2}+1\right)^{2}(x-1)^{12}(x+1)^{12}\left(x^{8}-x^{6}+x^{4}+x^{2}-1\right)^{2}\left(x^{8}-x^{6}\right. \\
& \left.-x^{4}+x^{2}+1\right)^{2}\left(x^{11}+x^{10}-x^{9}-2 x^{8}+x^{6}-x^{5}+x^{3}+x^{2}-x-1\right)^{2} \\
& \times\left(x^{11}-x^{10}-x^{9}+2 x^{8}-x^{6}-x^{5}+x^{3}-x^{2}-x+1\right)^{2} \\
& \times\left(x^{3}+x^{2}-1\right)^{4}\left(x^{3}-x^{2}+1\right)^{4}
\end{aligned}
$$

$$
\begin{aligned}
& N_{4}(x)=-2\left(x^{11}+x^{10}-x^{9}-2 x^{8}+x^{6}-x^{5}+x^{3}+x^{2}-x-1\right)\left(x^{11}-x^{10}-x^{9}+2 x^{8}\right. \\
&\left.-x^{6}-x^{5}+x^{3}-x^{2}-x+1\right)\left(x^{37}+x^{36}-4 x^{35}-6 x^{34}+6 x^{33}+15 x^{32}\right. \\
&-4 x^{31}-19 x^{30}+4 x^{29}+14 x^{28}-12 x^{27}-13 x^{26}+17 x^{25}+19 x^{24}-13 x^{23} \\
&-21 x^{22}+14 x^{21}+19 x^{20}-18 x^{19}-17 x^{18}+10 x^{17}+14 x^{16}-6 x^{15}-15 x^{14}
\end{aligned}
$$

$$
\begin{aligned}
& +8 x^{13}+10 x^{12}-5 x^{11}-4 x^{10}+4 x^{9}+8 x^{8}-3 x^{7}-5 x^{6}+x^{5}+x^{4}-x^{3} \\
& \left.-2 x^{2}+1\right)\left(x^{37}-x^{36}-4 x^{35}+6 x^{34}+6 x^{33}-15 x^{32}-4 x^{31}+19 x^{30}+4 x^{29}\right. \\
& -14 x^{28}-12 x^{27}+13 x^{26}+17 x^{25}-19 x^{24}-13 x^{23}+21 x^{22}+14 x^{21}-19 x^{20} \\
& -18 x^{19}+17 x^{18}+10 x^{17}-14 x^{16}-6 x^{15}+15 x^{14}+8 x^{13}-10 x^{12}-5 x^{11} \\
& \left.+4 x^{10}+4 x^{9}-8 x^{8}-3 x^{7}+5 x^{6}+x^{5}-x^{4}-x^{3}+2 x^{2}-1\right)\left(x^{198}-5 x^{196}\right. \\
& -94 x^{194}+1439 x^{192}-10077 x^{190}+45706 x^{188}-146052 x^{186}+322139 x^{184} \\
& -375099 x^{182}-460084 x^{180}+3735706 x^{178}-10989654 x^{176} \\
& +21041143 x^{174}-26443197 x^{172}+13762470 x^{170}+26655182 x^{168} \\
& -83450197 x^{166}+116277400 x^{164}-79099657 x^{162}-26911408 x^{160} \\
& +117139658 x^{158}-66719812 x^{156}-163339763 x^{154}+420127625 x^{152} \\
& -414373898 x^{150}-40794436 x^{148}+792055755 x^{146}-1369812592 x^{144} \\
& +1339768016 x^{142}-713686008 x^{140}+13379549 x^{138}+149203153 x^{136} \\
& +366222831 x^{134}-1070571661 x^{132}+1286138525 x^{130}-776725830 x^{128} \\
& -56615258 x^{126}+595347458 x^{124}-586136637 x^{122}+301833490 x^{120} \\
& -174524358 x^{118}+329622043 x^{116}-497688054 x^{114}+351910601 x^{112} \\
& +110012919 x^{110}-541133599 x^{108}+598537662 x^{106}-284947505 x^{104} \\
& -81751322 x^{102}+193056310 x^{100}-23672554 x^{98}-188554083 x^{96} \\
& +218784743 x^{94}-61217653 x^{92}-131592311 x^{90}+207344673 x^{88} \\
& -139738148 x^{86}+41821218 x^{84}-532196 x^{82}+1689902 x^{80} \\
& -25387860 x^{78}+36161567 x^{76}+1501343 x^{74}-30406174 x^{72} \\
& +12099108 x^{70}+5503781 x^{68}-11955348 x^{66}+12806700 x^{64} \\
& +5866625 x^{62}-13834418 x^{60}+1869202 x^{58}+1479416 x^{56} \\
& -6953954 x^{54}+12983920 x^{52}-1064824 x^{50}-5192613 x^{48} \\
& +61083 x^{46}-2124568 x^{44}+471817 x^{42}+4762797 x^{40}-9273 x^{38} \\
& -2486033 x^{36}-1428960 x^{34}+153688 x^{32}+1762191 x^{30}+549830 x^{28} \\
& -877409 x^{26}-560376 x^{24}+220009 x^{22}+275271 x^{20}+54321 x^{18} \\
& -115656 x^{16}-49531 x^{14}+30788 x^{12}+19929 x^{10}-7606 x^{8}-3448 x^{6} \\
& \left.+974 x^{4}+404 x^{2}-116\right)\left(x^{3}-x^{2}+1\right)^{2}\left(x^{3}+x^{2}-1\right)^{2} \\
& \times\left(x^{5}-x^{4}+x^{2}-x+1\right)^{2}\left(x^{5}+x^{4}-x^{2}-x-1\right)^{2}\left(x^{4}+1\right)^{2} \\
& \times\left(x^{8}-x^{6}-x^{4}+x^{2}+1\right)^{2}\left(x^{2}+1\right)^{5}(x-1)^{8}(x+1)^{8} x^{22}
\end{aligned}
$$

3.7. Algorithmic issues

We have calculated the generating matrix for bridges of heights up to 7. The computations were done by a computer program written in C++. The program iterates through all possible pairs of configurations, finds all possible shapes that connects the two configurations and generates the matrix in Maple format.

The program is quite time consuming, the case of height 7 required a total computation time of several weeks of CPU time on a standard desktop computer. However, the matrix was divided into submatrices, which were generated on separate computers.

Figure 3. The (3.12 ${ }^{2}$) lattice.

Table 3. Summary of data for the computations of the generating functions.

Height	1	2	3	4	5	6	7
Dimension of generating matrix	4	8	18	44	118	338	1024
Iteration steps	∞	∞	∞	∞	130	100	42
Exact enumeration up to term	∞	∞	∞	∞	260	200	84

The matrices and generating functions were treated in Maple. For heights up to 4 Maple was able to handle the symbolic inversions. For heights 5,6 and 7 we calculated a truncation of the infinite series representation, by the following iterative method.

Let $J_{\phi_{R}}$ be the column vector with a one in position ϕ_{R}, and zeros elsewhere, and let $G_{\phi_{R}}$ be column ϕ_{R} in G. Let $F^{(1)}=G_{\phi_{R}}+J_{\phi_{R}}$, and iteratively, for $k \geqslant 2, F^{(k)}=G F^{(k-1)}+J_{\phi_{R}}$. Then

$$
\left(V F^{(n)}\right)_{\phi_{L}}=V_{\phi_{L}, \phi_{R}}+(V G)_{\phi_{L}, \phi_{R}}+\left(V G^{2}\right)_{\phi_{L}, \phi_{R}}+\cdots+\left(V G^{n}\right)_{\phi_{L}, \phi_{R}} .
$$

For heights 5, 6 and 7, we performed 130, 100 and 42 iteration steps. For height 7, we are currently unable to do further iterations, due to local computer limitations. In table 3, the dimensions of the generating matrices, and the number of iteration steps are summarized.

It is easy to check that n iteration steps give the correct number of bridges, and thus also irreducible bridges, for lengths up to $2 n$. The lower bound is further improved by including all positive higher order terms.

4. Bounds for the $\left(3.12^{2}\right)$ lattice

Jensen and Guttmann [7] show, by studying the generating functions for self-avoiding polygons, that the connective constant of the $\left(3.12^{2}\right)$ lattice, see figure 3 , is related to the connective constant of the hexagonal lattice through

$$
\begin{equation*}
\frac{1}{\mu_{\mathrm{hex}}}=\frac{1}{\mu_{\left(3.12^{2}\right)}^{2}}+\frac{1}{\mu_{\left(3.12^{2}\right)}^{3}} \tag{4}
\end{equation*}
$$

Using Nienhuis' value [9], $\mu^{(N)}=\sqrt{2+\sqrt{2}}$ for the hexagonal lattice gives

$$
\begin{aligned}
\mu_{\left(3.12^{2}\right)}^{(N)}= & \frac{12^{\frac{1}{3}} \cdot(2+\sqrt{2})^{\frac{1}{6}} \cdot(9+\sqrt{81-12 \sqrt{2+\sqrt{2}}})^{\frac{1}{3}}}{6} \\
& +\frac{12^{\frac{1}{3}} \cdot(2+\sqrt{2})^{\frac{1}{6}} \cdot(9-\sqrt{81-12 \sqrt{2+\sqrt{2}}})^{\frac{1}{3}}}{6} \approx 1.711041 .
\end{aligned}
$$

Using the relation (4) and the bounds for $\mu_{\text {hex }}$ from the previous sections, we get corresponding bounds for $\mu_{\left(3.12^{2}\right)}$

$$
1.705263<\mu_{\left(3.12^{2}\right)}<1.719254
$$

Here, the bounds differ from the presumably correct value $\mu_{\left(3.12^{2}\right)}^{(N)}$ by $-0.0058(-0.34 \%)$ and +0.0082 ($+0.48 \%$), respectively.

Remark 3. The upper bound for $\mu_{\left(3.12^{2}\right)}$ obtained above is much better than the corresponding upper bound obtained by direct computations on the (3.12 ${ }^{2}$) lattice. Using (2) with $n=48$ and $m=18\left(K_{18}=23976\right)$ gave, after 620 CPU hours, the upper bound

$$
\mu_{\left(3.12^{2}\right)}<1.72922
$$

overestimating $\mu_{\left(3.12^{2}\right)}^{(N)}$ by 0.018 (1.1\%).
Remark 4. Jensen and Guttmann [7] show that the generating function for self-avoiding polygons on the $\left(3.12^{2}\right)$ lattice can be obtained from the corresponding generating function for the hexagonal lattice through the transformation $x \rightarrow x^{2}+x^{3}$ (apart from an initial term $x^{3} / 3$ corresponding to the triangles of $\left(3.12^{2}\right)$). This suffices to show the relation (4), as self-avoiding polygons have the same connective constant as self-avoiding walks.

However, Jensen and Guttmann also claim a similar relation between the generating functions for self-avoiding walks on these lattices, but their relation is incorrect, and it is doubtful whether such a relation exists.

References

[1] Ahlberg R and Janson S 1981 Upper bounds for the connectivity constant Department of Mathematics Uppsala University Preprint
[2] Alm S E 1993 Upper bounds for the connective constant of self-avoiding walks Comb. Probab. Comput. 2 115-36
[3] Alm S E 2004 In preparation
[4] Alm S E and Janson S 1990 Random self-avoiding walks on one-dimensional lattices Commun. Stat. Stochastic Models 6 169-212
[5] Fisher M E and Sykes M F 1959 Excluded-volume problem and the Ising model of ferromagnetism Phys. Rev. 114 45-58
[6] Hammersley J M 1957 Percolation processes II. The connective constant Proc. Camb. Phil. Soc. 53 642-5
[7] Jensen I and Guttmann A J 1998 Self-avoiding walks, neighbour-avoiding walks and trails on semiregular lattices J. Phys. A: Math. Gen. 31 8137-45
[8] Kesten H 1963 On the number of self-avoiding walks J. Math. Phys. 4 960-9
[9] Nienhuis B 1982 Exact critical point and critical exponent of $O(n)$ models in two dimensions Phys. Rev. Lett. 49 1062-5
[10] Parviainen R and Wierman J C 2002 The subgraph partial ordering of Archimedean and Laves lattices UUDM Report 2002:12 Department of Mathematics Uppsala University
[11] Sykes M F, Guttmann A J, Watts M G and Roberts P D 1972 The asymptotic behaviour of self-avoiding walks and returns on a lattice J. Phys. A: Math. Gen. 5 653-60
[12] Wierman J C and Parviainen R 2002 Ordering bond percolation critical probabilities UUDM Report 2002:44 Department of Mathematics Uppsala University

