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Abstract
We give improved bounds for the connective constant of the hexagonal lattice.
The lower bound is found by using Kesten’s method of irreducible bridges and
by determining generating functions for bridges on one-dimensional lattices.
The upper bound is obtained as the largest eigenvalue of a certain transfer
matrix. Using a relation between the hexagonal and the (3.122) lattices, we
also give bounds for the connective constant of the latter lattice.

PACS number: 05.50.+q
Mathematics Subject Classification: 05A15, 05C40

1. Introduction

In this work we give improved bounds for the connective constant of the hexagonal lattice.
However, the methods used are valid for a larger class of lattices.

The main motivation is to improve the partial order induced by strict bounds for connective
constants for different lattices, studied in [3]. In order to separate the hexagonal lattice from
the (4.82) lattice, we needed to apply a non-standard application of Kesten’s method, which
motivated a separate paper on the hexagonal lattice. A related partial order defined by
percolation thresholds is studied in [10, 12].

1.1. Self-avoiding walks

A walk of length n on a lattice is an alternating sequence of vertices and edges
{v0, e1, v1, e2, . . . , en, vn} such that the edge ei connects the vertices vi−1 and vi . The walk is
self-avoiding if all vertices v0, v1, . . . , vn are distinct.

For a regular graph, let fn denote the number of self-avoiding walks, starting at a fixed
vertex. Hammersley [6] proved that there exists a constant µ, called the connective constant
of the lattice, such that

lim
n→∞ f 1/n

n = µ.
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Define the generating function for self-avoiding walks, sometimes called the susceptibility,
by (f0 = 1 by convention)

F(x) =
∞∑

n=0

fnx
n.

The generating function has radius of convergence xc = µ−1.
The connective constant is unknown for all (truly) two-dimensional lattices, although

Nienhuis [9] has presented strong evidence through non-rigorous computations that the

connective constant for the hexagonal lattice equals
√

2 +
√

2 ≈ 1.847 759.

1.2. Bounds for the connective constant

Since the connective constants are unknown for most lattices, many papers concern bounds
for the constants.

The first bounds for the connective constant, µ = µhex, of the hexagonal lattice were
given by Fisher and Sykes [5] in 1959. They obtained the bounds

1.7872 < µ < 1.9276

and also enumerated fn, for n � 20. Sykes et al [11] extended the enumeration to n � 34
in 1972.

In his pioneering paper, Hammersley [6] showed that

µ < f 1/n
n

which, using f34 gives

µ < f
1/34
34 < 1.9232

although Sykes et al did not give this bound in their paper.
Ahlberg and Janson [1] used the above enumeration, and the fact that for the hexagonal

lattice

µ < (fn/f2)
1/(n−2) (1)

to show that

µ < (f34/f2)
1/32 < 1.895.

In 1993, Alm [2] showed that

µ < (λ1(G(m, n)))1/(n−m) (2)

where λ1 denotes the largest eigenvalue of the matrix G(m, n) = (gij )Km×Km
, where the

element gij is the number of n-stepped self-avoiding walks that start with γi and end with a
translation of γj , and γ1, . . . , γKm

are the different m-stepped self-avoiding walks (after taking
symmetry considerations into account).

Using (2) with n = 34,m = 12, gave K12 = 736, and the bound

µ < 1.876 03

which is the currently best available upper bound for µ.
To summarize, we know that

1.7872 < µ < 1.876 03

which should be compared with the supposedly correct value given by Nienhuis [9],

µ(N) =
√

2 +
√

2 ≈ 1.847 759.

The bounds differ by −0.061 (−3.3%) and +0.028 (+1.5%) from this value, so that there
is more room for improvement of the lower bound.



Bounds for the connective constant of the hexagonal lattice 551

2. Upper bounds

Improved upper bounds are obtained by the method of Alm [2]. The improvement of computers
in the last ten years makes it possible to handle much larger matrices as well as much longer
self-avoiding walks.

Using (2) with n = 45,m = 17, we get K17 = 17 700, and the bound

µ < 1.868 832.

This reduces the difference between the upper bound and µ(N) =
√

2 +
√

2 to +0.021 (+1.1%).
The computation took 944 CPU hours on a 1 GHz PC.
From the matrix G(m, n), we can also compute fn, thereby extending the enumeration

of fn to n � 45. This was further extended to n � 48 by direct computations; f48 requiring
928 CPU hours.

The values of fn, n � 48 are given in table 1 together with upper bounds for µ for
m = 17 and 34 � n � 45. For comparison, we also include the bounds (1) for m = 2,
i.e. µ̄2 = (fn/f2)

1/(n−2), which are the best bounds that can be obtained directly from the
enumeration.

3. Lower bounds

3.1. The method of Kesten

In [8], Kesten presents a method for finding lower bounds for the connective constant, based
on so called irreducible bridges.

Given a fixed embedding of the lattice in the plane, let the coordinates for a vertex v be
denoted by (v(x), v(y)). A bridge of length n is a self-avoiding walk such that

v0(y) < vi(y) � vn(y) for i = 1, . . . , n − 1.

Denote the number of bridges of length n by bn, and the generating function for bridges
by (b0 = 1)

B(x) =
∞∑

n=0

bnx
n.

An irreducible bridge is a bridge that cannot be decomposed into two bridges. Denote the
number of irreducible bridges of length n by an, and the generating function for irreducible
bridges by (a0 = 0)

A(x) =
∞∑

n=1

anx
n.

Kesten proved that the connective constants for bridges and irreducible bridges are the
same as for self-avoiding walks,

lim
n→∞ b1/n

n = lim
n→∞ a1/n

n = lim
n→∞ f 1/n

n = µ.

Further, A(x) and B(x) are related by

B(x) = 1

1 − A(x)
.

Then, since A(x) and B(x) both have radius of convergence µ−1, it follows [8, theorem 5]
that the solution of A(x) = 1 is µ−1.
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Table 1. Number of self-avoiding walks, fn, and upper bounds, µ̄m, for m = 2 and m = 17.

n fn µ̄2 µ̄17

1 3
2 6
3 12 2.000 000
4 24 2.000 000
5 48 2.000 000
6 90 1.967 990
7 174 1.961 010
8 336 1.955 982
9 648 1.952 042

10 1218 1.942 840
11 2328 1.939 314
12 4416 1.935 031
13 8388 1.931 770
14 15 780 1.927 509
15 29 892 1.924 934
16 56 268 1.921 862
17 106 200 1.919 545
18 199 350 1.916 866
19 375 504 1.914 895
20 704 304 1.912 692
21 1 323 996 1.910 950
22 2 479 692 1.909 029
23 4 654 464 1.907 493
24 8 710 212 1.905 836
25 16 328 220 1.904 467
26 30 526 374 1.902 999
27 57 161 568 1.901 771
28 106 794 084 1.900 472
29 199 788 408 1.899 364
30 372 996 450 1.898 197
31 697 217 994 1.897 191
32 1 300 954 248 1.896 140
33 2 430 053 136 1.895 223
34 4 531 816 950 1.894 268 1.872 434
35 8 459 583 678 1.893 427 1.872 094
36 15 769 091 448 1.892 556 1.871 650
37 29 419 727 280 1.891 782 1.871 334
38 54 816 035 922 1.890 984 1.870 930
39 102 216 080 286 1.890 269 1.870 635
40 190 380 602 052 1.889 534 1.870 266
41 354 843 312 276 1.888 871 1.869 989
42 660 671 299 170 1.888 191 1.869 650
43 1 230 891 734 724 1.887 575 1.869 390
44 2 291 023 353 264 1.886 944 1.869 077
45 4 266 787 588 320 1.886 370 1.868 832
46 7 939 282 155 480 1.885 783
47 14 780 995 214 220 1.885 246
48 27 495 750 661 500 1.884 698
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Figure 1. The hexagonal lattice, with an irreducible bridge of height 4.

Lower bounds for µ follow from the observation that, if 0 � ãn � an, n = 2, 3, . . . ,∞,
then the reciprocal x−1

c of the solution xc to
∞∑

n=1

ãnx
n = 1

is a lower bound for the connective constant µ. Note that by letting ãn = 0 for n > N , this
allows us to truncate the infinite series.

Consider the standard embedding of the hexagonal lattice, as shown in figure 1. Define
the height of a walk from v0 to vn as the minimum number of vertical edges in any walk from
v0 to vn. An irreducible bridge of length 22 and height 4 is shown in figure 1. Let bN

n and
aN

n denote the number of bridges and irreducible bridges of length n and height N, and denote
their generating functions by BN(x) and AN(x). Since

∑∞
k=1 ak

n = an, the reciprocal of the
solution to

N∑
k=1

Ak(x) =
∞∑

n=2

(
N∑

k=1

ak
n

)
xn = 1

is a lower bound for the connective constant µ.
Note that irreducible bridges must end at a top vertex of a hexagon, and that an irreducible

bridge of height N � 2 must use at least three vertical edges of each height except the first,
and have length at least 6N − 2. For height 1, there are two irreducible bridges of each even
length n � 2 (an irreducible bridge on the hexagonal lattice must have length at least 2).

Also, as every bridge either is an irreducible bridge, or can be decomposed into one
irreducible bridge and one bridge, the following relation holds

BN(x) = AN(x) + AN−1(x)B1(x) + AN−2(x)B2(x) + · · · + A1(x)BN−1(x).

The generating function AN(x) can thus be obtained from Ak(x), k = 1, . . . , N − 1 and
Bk(x), k = 1, . . . , N , by

AN(x) = BN(x) − A1(x)BN−1(x) − A2(x)BN−2(x) − · · · − AN−1(x)B1(x). (3)

In the next section we will see that, using methods from Alm and Janson [4], it is
theoretically possible to calculate BN(x), and thus AN(x), in finite time for any fixed
height N.

3.2. One-dimensional self-avoiding walks and bridges

In [4], Alm and Janson have studied self-avoiding walks on one-dimensional lattices. For our
purpose, it is sufficient to define a one-dimensional lattices as a horizontal strip of finite height
of a two-dimensional lattice.
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Figure 2. The embedding of the hexagonal lattice used for finding the generating function for
bridges of height 3.

They show how to exactly compute the generating function for self-avoiding walks. The
generating function is in principle obtained as one element in the inverse of a large matrix.

Only minor straightforward modifications are necessary to get the same result for the
generating function for bridges.

To state the result precisely, we first need several definitions. Assume that the one-
dimensional lattice is embedded in the plane in such a way that it consists of an alternating
sequence of isomorphic hinges and isomorphic sections.

A hinge consists of vertices, all with the same x-coordinate, and all edges between these
vertices. A section consists of all edges between two adjacent hinges. For the hexagonal
lattice, we use embeddings of the type showed in figure 2, in which the hinges consist of the
vertices and the vertical edges. The sections consist of the dotted edges. Note that in the graph
in figure 2, self-avoiding walks that start at one of the bottom vertices, and ends at one of the
top vertices, will be bridges of height 3, according to the usual embedding of the hexagonal
lattice.

Consider a bridge on the lattice. The appearance of the bridge in a given section is called
a configuration. The appearance of the bridge in a given hinge is called a shape. The shape
of a particular hinge is not necessarily determined by the adjacent configurations, but a shape
completely determines the configurations on both sides.

Let � be the set of all possible configurations, extended with two empty configurations,
φL and φR . Any finite walk must by convention start with the configuration φL, and end with
the configuration φR . Any finite bridge must start at the lowest level, and end at the highest
level.

There is a one-to-one correspondence between bridges and correctly connected alternating
sequences {φL = c0, s1, c1, . . . , sm, cm = φR} of configurations and shapes, correctly
connected meaning that for every shape si , ci−1 and ci are the configurations determined
by si .

The generating function BN(x) for bridges of some fixed height N is obtained from the
following two square matrices, both indexed by �. H = H(x) is a diagonal matrix with
elements xhi , where hi is the number of edges in configuration i. V = V (x) = {vij } has
elements vij = ∑

xvk , where the sum is over all shapes k that can connect configuration i
to the left, with configuration j to the right, and vk is the number of edges in shape k. By
convention, viφL

= vφRi = 0, for all i. Define the generating matrix G = G(x) by G = HV .

Theorem 1 (Alm, Janson).

BN(x) = VφL,φR
+ (V G)φL,φR

+ (V G2)φL,φR
+ · · · = (V (I − G)−1)φL,φR

.



Bounds for the connective constant of the hexagonal lattice 555

Remark 1. A more straightforward way to get lower bounds from one-dimensional lattices
would be to directly compute the connective constants for self-avoiding walks. However, this
gives worse bounds than the method based on bridges, for one-dimensional lattices of the
same heights.

3.3. Examples

We now illustrate theorem 1 with two examples, by calculating the generating function for
irreducible bridges of heights 1 and 2.

For height 1, there are four possible configurations, � = {φL,↖,↘, φR}, with lengths
0, 1, 1, 0. The generating matrix G1 is given by

G1 = H1V1 =




1 0 0 0
0 x 0 0
0 0 x 0
0 0 0 1







0 1 x2 x2

0 x 0 x

0 0 x x

0 0 0 0


 =




0 1 x2 x2

0 x2 0 x2

0 0 x2 x2

0 0 0 0


 .

The generating function is given by

A1(x) = B1(x) = (V1(I − G1)
−1)1,4 = 2x2

1 − x2

= 2x2 + 2x4 + 2x6 + 2x8 + · · · .
For height 2, there are eight configurations,

� =
{
φL ,

↘
↖ ,

↖
, ↖ ,

↘
, ↘ , φR ,

↖
↘

}
.

The matrices H2 and V2 are given by

H2 =




1 0 0 0 0 0 0 0
0 x2 0 0 0 0 0 0
0 0 x 0 0 0 0 0
0 0 0 x 0 0 0 0
0 0 0 0 x 0 0 0
0 0 0 0 0 x 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 x2




V2 =




0 x2 1 x2 x4 x2 x4 x2

0 x2 0 x2 x2 x2 x2 x2

0 0 x x 0 0 x3 x3

0 0 x3 x 0 0 x 0
0 0 0 0 x x x x

0 0 0 0 x3 x x3 x

0 0 0 0 0 0 0 0
0 0 0 0 0 0 x2 x2




.

The generating function is

A2(x) = B2(x) − A1(x)B1(x) = (V2(I − G2)
−1)1,7 − A1(x)2

= 2x10(x4 + 4x2 + 4)

(1 − x2)2(1 + x2)(1 − x2 − x4 − x8)
= 8x10 + 24x12 + 58x14 + · · · .

3.4. Summary

In this section we summarize the method used for the lower bound. Assume that we have
calculated the generating functions Bk for bridges of height k = 1, . . . , N . From these we
can calculate Ak , by equation (3). A lower bound for the connective constant µ is achieved
by the reciprocal x−1

c of the solution xc to the equation
∑N

k=1 Ak(x) = 1.
Note that, if we underestimate the functions Bk , we get underestimates of the functions

Ak , and therefore, still get a lower bound. It is therefore permissible to truncate the infinite
series Bk , for the cases where it is feasible to carry out the symbolic inversion of the matrix,
and also to truncate the infinite series representation of the inverse matrix.
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Table 2. Number of irreducible bridges.

Height

n 1 2 3 4 5 6 7

2 2
4 2
6 2
8 2

10 2 8
12 2 24
14 2 58
16 2 116 40
18 2 226 248
20 2 418 956
22 2 764 2932 232
24 2 1368 8158 2208
26 2 2438 21 194 11 908
28 2 4312 52 768 48 924 1456
30 2 7612 127 424 174 384 18 656
32 2 13 398 301 336 567 066 130 180
34 2 23 564 701 240 1 734 242 669 868 9584
36 2 41 398 1 613 176 5077 228 2 896 786 154 112
38 2 72 708 3 678 486 14 399 854 11 186 920 1 321 320
40 2 127 646 8 332 878 39 863 556 39 960 038 8 176 732 65 136
42 2 224 070 18 781 132 108 330 740 134 910 038 41 577 438 1 258 416
44 2 393 274 42 167 658 290 120 946 436 772 298 185 506 724 12 797 828
46 2 690 222 94 393 440 768 000 442 1 369 384 066 754 670 432 92 575 300
48 2 1 211 320 210 817 326 2 014 040 116 4 287 469 968 2 868 092 528 541 473 298
50 2 2 125 800 469 995 164 5 241 551 508 12 553 608 776 10 351 754 668 2 740 477 924
52 2 3 730 590 1 046 346 578 13 555 798 878 37 039 148 380 35 894 677 308 12 497 716 690
54 2 6 546 818 2 326 934 596 34 876 762 888 107 870 357 502 120 587 726 960 52 714 512 594
56 2 11 488 942 5 170 378 690 89 344 535 622 310 799 090 686 394 963 366 374 209 362 196 128
58 2 20 161 784 11 480 731 734 228 047 517 858 887 494 845 612 1 267 269 921 544 793 008 736 988
60 2 35 381 548 25 479 343 670 580 303 521 948 2 515 218 274 794 3 998 003 947 894 2 891 762 035 512
62 2 62 090 392 56 523 233 522 1 472 856 568 902 7 082 773 418 692 12 437 565 678 140 10 224 629 512 728
64 2 108 961 132 125 349 924 212 3 729 993 423 200 19 835 888 844 516 38 241 846 805 060 35 247 308 133 632
66 2 191 213 568 277 913 356 354 9 428 372 543 664 55 290 614 198 678 116 425 397 228 820 118 980 531 760 554
68 2 335 556 516 616 036 743 246 23 793 707 134 584 153 488 979 691 246 351 481 068 641 732 394 632 167 359 492
70 2 588 860 754 1 365 319 252 836 59 962 719 844 118 424 578 943 200 246 1 053 470 052 659 232 1 289 668 249 938 810
72 2 1 033 378 688 3 025 567 446 724 150 930 254 650 748 1 170 815 299 517 686 3 137 874 062 518 550 4 162 060 662 237 216
74 2 1 813 453 306 6 704 031 069 242 379 504 185 427 756 3 219 812 806 690 196 9 295 979 825 494 524 13 288 671 828 545 886
76 2 3 182 388 814 14 853 570 233 752 953 369 709 263 106 8 833 331 985 285 592 27 409 160 402 323 884 42 039 183 397 649 906
78 2 5 584 703 188 32 907 775 865 780 2 393 102 745 030 608 24 181 849 819 174 446 80 479 402 119 427 078 131 938 075 461 499 130
80 2 9 800 471 012 72 902 886 657 418 6 002 886 315 196 280 66 073 638 249 791 486 235 435 386 138 206 528 411 227 122 483 745 614
82 2 17 198 627 838 161 500 519 239 580 15 048 570 170 389 500 180 230 973 427 403 650 686 491 758 206 462 152 1 273 995 129 812 876 972
84 2 30 181 488 004 357 758 261 638 838 37 705 022 115 819 458 490 874 221 247 694 464 1 995 853 645 048 476 200 3 925 967 882 491 042 342

3.5. Results

For heights up to 4, we were able to find exact expressions for the generating function for
irreducible bridges. These are given in section 3.6. For heights 5, 6 and 7, we were also able to
determine the generating matrix G, but were unable to carry out the matrix inversion. Instead
we truncated the infinite series representation of the inverse, by an iterative method described
in section 3.7.

The number of irreducible bridges for heights up to 7, and lengths up to 84 are given
in table 2.

To improve the lower bound, we have also computed the number of irreducible bridges
of heights 8, 9 and 10, for lengths up to 58,

A8(x) = 452 960x46 + 10 207 872x48 + 120 066 252x50 + 99 411 028x52 + 657 310 510x54

+ 37 244 196 500x56 + 188 193 918 866x58 + O(x60)

A9(x) = 3204 784x52 + 82 465 376x54 + 1100 970 508x56 + 10 265 702 604x58 + O(x60)

A10(x) = 22 982 032x58 + O(x60).
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The best lower bound found in this work is 1.833 009 764. The difference between this
bound and µ(N) =

√
2 +

√
2 is −0.015 (−0.8%), slightly smaller than the difference for the

upper bound.

Remark 2. The computations for n = 58 were distributed over a large number of computers.
The total computation time was 22 400 CPU hours (1.6 GHz).

3.6. The generating functions

Below, we give the generating function for heights up to 4. DN and NN denotes the denominator
and numerator of AN .

A1(x) = 2x2

1 − x2

A2(x) = 2x10(x4 + 4x2 + 4)

(1 − x2)2(1 + x2)(1 − x2 − x4 − x8)

D3(x) = (x4 − 1)2(x8 − 2x6 + 3x4 − 3x2 + 1)(x38 − 5x36 + 14x34 − 27x32 + 36x30 − 34x28

+ 19x26 − 2x24 − 6x22 + 11x20 − 18x18 + 27x16 − 23x14

+ 9x12 − x10 + 4x6 − 8x4 + 5x2 − 1)

N3(x) = −2(x38 + 4x36 − 20x34 + 45x32 − 57x30 − 6x28 + 127x26 − 243x24

+ 205x22 − 22x20 − 54x18 − 21x16 + 137x14 − 2x12

− 209x10 + 147x8 + 38x6 − 34x4 − 36x2 + 20)x16

D4(x) = (x2 + 1)9(x5 − x4 + x2 − x + 1)2(x5 + x4 − x2 − x − 1)2(x4 + 1)2(x40 − 4x38

+ 4x36 + 5x34 − 17x32 + 23x30 − 16x28 − 4x26 + 17x24 − 15x22 + 8x20

+ 5x18 − 14x16 + 5x14 + 2x12 − 2x10 + 4x8 − x6 − 4x4 + 1)2(x37 − x36

− 4x35 + 6x34 + 6x33 − 15x32 − 4x31 + 19x30 + 4x29 − 14x28 − 12x27

+ 13x26 + 17x25 − 19x24 − 13x23 + 21x22 + 14x21 − 19x20 − 18x19 + 17x18

+ 10x17 − 14x16 − 6x15 + 15x14 + 8x13 − 10x12 − 5x11 + 4x10 + 4x9 − 8x8

− 3x7 + 5x6 + x5 − x4 − x3 + 2x2 − 1)2(x37 + x36 − 4x35 − 6x34 + 6x33

+ 15x32 − 4x31 − 19x30 + 4x29 + 14x28 − 12x27 − 13x26 + 17x25 + 19x24

− 13x23 − 21x22 + 14x21 + 19x20 − 18x19 − 17x18 + 10x17 + 14x16 − 6x15

− 15x14 + 8x13 + 10x12 − 5x11 − 4x10 + 4x9 + 8x8 − 3x7 − 5x6 + x5

+ x4 − x3 − 2x2 + 1)2(x − 1)12(x + 1)12(x8 − x6 + x4 + x2 − 1)2(x8 − x6

− x4 + x2 + 1)2(x11 + x10 − x9 − 2x8 + x6 − x5 + x3 + x2 − x − 1)2

× (x11 − x10 − x9 + 2x8 − x6 − x5 + x3 − x2 − x + 1)2

× (x3 + x2 − 1)4(x3 − x2 + 1)4

N4(x) = −2(x11 + x10 − x9 − 2x8 + x6 − x5 + x3 + x2 − x − 1)(x11 − x10 − x9 + 2x8

− x6 − x5 + x3 − x2 − x + 1)(x37 + x36 − 4x35 − 6x34 + 6x33 + 15x32

− 4x31 − 19x30 + 4x29 + 14x28 − 12x27 − 13x26 + 17x25 + 19x24 − 13x23

− 21x22 + 14x21 + 19x20 − 18x19 − 17x18 + 10x17 + 14x16 − 6x15 − 15x14
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+ 8x13 + 10x12 − 5x11 − 4x10 + 4x9 + 8x8 − 3x7 − 5x6 + x5 + x4 − x3

− 2x2 + 1)(x37 − x36 − 4x35 + 6x34 + 6x33 − 15x32 − 4x31 + 19x30 + 4x29

− 14x28 − 12x27 + 13x26 + 17x25 − 19x24 − 13x23 + 21x22 + 14x21 − 19x20

− 18x19 + 17x18 + 10x17 − 14x16 − 6x15 + 15x14 + 8x13 − 10x12 − 5x11

+ 4x10 + 4x9 − 8x8 − 3x7 + 5x6 + x5 − x4 − x3 + 2x2 − 1)(x198 − 5x196

− 94x194 + 1439x192 − 10 077x190 + 45 706x188 − 146 052x186 + 322 139x184

− 375 099x182 − 460 084x180 + 3735 706x178 − 10 989 654x176

+ 21 041 143x174 − 26 443 197x172 + 13 762 470x170 + 26 655 182x168

− 83 450 197x166 + 116 277 400x164 − 79 099 657x162 − 26 911 408x160

+ 117 139 658x158 − 66 719 812x156 − 163 339 763x154 + 420 127 625x152

− 414 373 898x150 − 40 794 436x148 + 792 055 755x146 − 1369 812 592x144

+ 1339 768 016x142 − 713 686 008x140 + 13 379 549x138 + 149 203 153x136

+ 366 222 831x134 − 1070 571 661x132 + 1286 138 525x130 − 776 725 830x128

− 56 615 258x126 + 595 347 458x124 − 586 136 637x122 + 301 833 490x120

− 174 524 358x118 + 329 622 043x116 − 497 688 054x114 + 351 910 601x112

+ 110 012 919x110 − 541 133 599x108 + 598 537 662x106 − 284 947 505x104

−81 751 322x102 + 193 056 310x100 − 23 672 554x98 − 188 554 083x96

+ 218 784 743x94 − 61 217 653x92 − 131 592 311x90 + 207 344 673x88

− 139 738 148x86 + 41 821 218x84 − 532 196x82 + 1689 902x80

− 25 387 860x78 + 36 161 567x76 + 1501 343x74 − 30 406 174x72

+ 12 099 108x70 + 5503 781x68 − 11 955 348x66 + 12 806 700x64

+ 5866 625x62 − 13 834 418x60 + 1869 202x58 + 1479 416x56

− 6953 954x54 + 12 983 920x52 − 1064 824x50 − 5192 613x48

+ 61 083x46 − 2124 568x44 + 471 817x42 + 4762 797x40 − 9273x38

− 2486 033x36 − 1428 960x34 + 153 688x32 + 1762 191x30 + 549 830x28

− 877 409x26 − 560 376x24 + 220 009x22 + 275 271x20 + 54 321x18

−115 656x16 − 49 531x14 + 30 788x12 + 19 929x10 − 7606x8 − 3448x6

+ 974x4 + 404x2 − 116)(x3 − x2 + 1)2(x3 + x2 − 1)2

× (x5 − x4 + x2 − x + 1)2(x5 + x4 − x2 − x − 1)2(x4 + 1)2

× (x8 − x6 − x4 + x2 + 1)2(x2 + 1)5(x − 1)8(x + 1)8x22.

3.7. Algorithmic issues

We have calculated the generating matrix for bridges of heights up to 7. The computations
were done by a computer program written in C++. The program iterates through all possible
pairs of configurations, finds all possible shapes that connects the two configurations and
generates the matrix in Maple format.

The program is quite time consuming, the case of height 7 required a total computation
time of several weeks of CPU time on a standard desktop computer. However, the matrix was
divided into submatrices, which were generated on separate computers.
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Figure 3. The (3.122) lattice.

Table 3. Summary of data for the computations of the generating functions.

Height 1 2 3 4 5 6 7

Dimension of generating matrix 4 8 18 44 118 338 1024
Iteration steps ∞ ∞ ∞ ∞ 130 100 42
Exact enumeration up to term ∞ ∞ ∞ ∞ 260 200 84

The matrices and generating functions were treated in Maple. For heights up to 4 Maple
was able to handle the symbolic inversions. For heights 5, 6 and 7 we calculated a truncation
of the infinite series representation, by the following iterative method.

Let JφR
be the column vector with a one in position φR , and zeros elsewhere, and let GφR

be column φR in G. Let F (1) = GφR
+ JφR

, and iteratively, for k � 2, F (k) = GF(k−1) + JφR
.

Then

(V F (n))φL
= VφL,φR

+ (V G)φL,φR
+ (V G2)φL,φR

+ · · · + (V Gn)φL,φR
.

For heights 5, 6 and 7, we performed 130, 100 and 42 iteration steps. For height 7, we are
currently unable to do further iterations, due to local computer limitations. In table 3, the
dimensions of the generating matrices, and the number of iteration steps are summarized.

It is easy to check that n iteration steps give the correct number of bridges, and thus also
irreducible bridges, for lengths up to 2n. The lower bound is further improved by including
all positive higher order terms.

4. Bounds for the (3.122) lattice

Jensen and Guttmann [7] show, by studying the generating functions for self-avoiding
polygons, that the connective constant of the (3.122) lattice, see figure 3, is related to the
connective constant of the hexagonal lattice through

1

µhex
= 1

µ2
(3.122)

+
1

µ3
(3.122)

. (4)

Using Nienhuis’ value [9], µ(N) =
√

2 +
√

2 for the hexagonal lattice gives

µ
(N)

(3.122)
= 12

1
3 · (2 +

√
2)

1
6 · (

9 +
√

81 − 12
√

2 +
√

2
) 1

3

6

+
12

1
3 · (2 +

√
2)

1
6 · (

9 −
√

81 − 12
√

2 +
√

2
) 1

3

6
≈ 1.711 041.

Using the relation (4) and the bounds for µhex from the previous sections, we get
corresponding bounds for µ(3.122)

1.705 263 < µ(3.122) < 1.719 254.
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Here, the bounds differ from the presumably correct value µ
(N)

(3.122)
by −0.0058 (−0.34%) and

+0.0082 (+0.48%), respectively.

Remark 3. The upper bound for µ(3.122) obtained above is much better than the corresponding
upper bound obtained by direct computations on the (3.122) lattice. Using (2) with n = 48
and m = 18 (K18 = 23 976) gave, after 620 CPU hours, the upper bound

µ(3.122) < 1.729 22

overestimating µ
(N)

(3.122)
by 0.018 (1.1%).

Remark 4. Jensen and Guttmann [7] show that the generating function for self-avoiding
polygons on the (3.122) lattice can be obtained from the corresponding generating function
for the hexagonal lattice through the transformation x → x2 + x3 (apart from an initial term
x3/3 corresponding to the triangles of (3.122)). This suffices to show the relation (4), as
self-avoiding polygons have the same connective constant as self-avoiding walks.

However, Jensen and Guttmann also claim a similar relation between the generating
functions for self-avoiding walks on these lattices, but their relation is incorrect, and it is
doubtful whether such a relation exists.
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